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A human cytomegalovirus (HCMV) pentameric glycoprotein com-
plex (PC), gH–gL–UL128–UL130–UL131A, is necessary for viral in-
fection of clinically relevant cell types, including epithelial cells,
which are important for interhost transmission and disease. We
performed genome-wide CRISPR/Cas9 screens of different cell types
in parallel to identify host genes specifically required for HCMV in-
fection of epithelial cells. This effort identified a multipass mem-
brane protein, OR14I1, as a receptor for HCMV infection. This
olfactory receptor family member is required for HCMV attach-
ment, entry, and infection of epithelial cells and is dependent on
the presence of viral PC. OR14I1 is required for AKT activation and
mediates endocytosis entry of HCMV. We further found that HCMV
infection of epithelial cells is blocked by a synthetic OR14I1 peptide
and inhibitors of adenylate cyclase and protein kinase A (PKA) sig-
naling. Identification of OR14I1 as a PC-dependent HCMV host re-
ceptor associatedwith epithelial tropism and the role of the adenylate
cyclase/PKA/AKT–mediated signaling pathway in HCMV infection
reveal previously unappreciated targets for the development of
vaccines and antiviral therapies.
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Human cytomegalovirus (HCMV) is a leading cause of
infection-associated birth defects and a major cause of

morbidity and mortality in immune-insufficient individuals such as
AIDS patients and transplant recipients (1–3). There are no ef-
fective vaccines, and antiviral therapies for HCMV infection are
limited. The antiviral drugs currently in use are prone to resistance
and can be highly toxic to patients. Thus, there remains a need for
host-directed therapeutics and vaccines against HCMV. Most
viruses exploit a receptor(s) on the cell surface to invade the host
cell, initiate replication, and mediate subsequent viral propagation.
Receptor targeting often restricts virus infection efficiently and can
determine tissue and/or species tropism. HCMV can infect multiple
cell types including epithelial and endothelial cells, fibroblasts, cells
within the monocytic lineage, smooth muscle cells, neurons, stromal
cells, and hepatocytes (4). As a result, HCMV can be found in a
variety of tissues. It has been thought there could be multiple host
cell receptors mediating virus entry, given this complexity. Although
a few cellular receptors have been identified for certain cells (5–9),
they remain elusive for the majority of cell types.
HCMV encodes at least 25 membrane glycoproteins that are

found in the viral envelope. HCMV infects a wide spectrum of
cell types by utilizing different forms of glycoprotein gH–gL to
enter different cell types by distinct routes of entry. It is not always
clear whether these glycoprotein complexes act directly in mem-
brane fusion or in binding receptors in virus entry. As reported, gB

is a fusion protein and gH–gL complexes act upstream of gB to
bind receptors, thereby activating gB for fusion (10). HCMV en-
ters human fibroblasts by direct fusion of the viral envelope with
the plasma membrane at neutral pH (11). By contrast, HCMV
enters into epithelial and endothelial cells through internalization
of virions into endosomes and low pH-dependent fusion with
endosomal membranes (12). HCMV infection of epithelial cells
and fibroblasts is mediated by distinct viral gH–gL envelope gly-
coprotein complexes (13). A gH–gL–gO trimer complex (TC) is
essential for entry into all cell types (14). An HCMV pentamer
complex (PC) is composed of three proteins, UL128, UL130, and
UL131, that complex with gH–gL. This PC is important for in-
fection of epithelial and endothelial cells and monocytes/macro-
phages (15–17). So-called low-passage, clinical HCMV isolates
express both the PC and TC and have broad tropism, including
the ability to infect all of the above-mentioned cell types (18).
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Omission of any one of the five members of the PC reduces as-
sembly and entry into epithelial/endothelial cells (19). High-
passaged laboratory strains of HCMV often lack the PC on vi-
rions but retain the TC and gB. For example, the AD169 strain
lacks UL128 to UL150 ORFs (12), including UL128 to UL131,
which prevent PC formation, resulting in virions expressing only gB
and the TC. TC-expressing viruses have restricted tropism and in-
fect fibroblasts. Restoration of functional PC genes in HCMV
laboratory strains results in their ability to infect epithelial cells (17).
HCMV utilizes multiple host cell receptors to bind and infect

cells, which may also explain its broad tropism. EGFR is
reported to be an HCMV receptor that binds gB (20). While
some have challenged the notion that EGFR is important for
HCMV entry, EGFR signaling enhances HCMV replication in
certain cell types (5, 21, 22). PDGFR-α is another HCMV re-
ceptor and binds to gB (9). However, PDGFR-α does not
function as an entry receptor for pentamer-expressing HCMV
infection of epithelial or endothelial cells (23). Recently, the
trimer has been shown to bind directly to PDGFR-α (24), which
makes virus binding and entry more complex. Wu et al. further
identified the entry of TC viruses via PDGFR-α (25). In addition,
integrins have been shown to be coreceptors for HCMV entry of
fibroblasts, monocytes, and trophoblasts (7, 8, 26, 27) through
their interactions with gB and the PC. The surface molecule
THY-1 (CD90) also plays an important role in the initial stage of
virus infection. It binds to both gB and gH and promotes entry of
both laboratory-adapted and clinical isolates of HCMV (6, 28). It
is uncertain whether THY-1 directly binds to these proteins, al-
though THY-1 likely facilitates HCMV entry in many cell types.
CD147 promotes entry of pentamer-expressing HCMV into epi-
thelial and endothelial cells. However, soluble CD147 does not
block HCMV entry, and the TC and PC do not bind directly to
CD147 (29). During the preparation of this manuscript, the single-
pass membrane protein NRP2 was shown to function as a receptor
for the PC and HCMV infection of epithelial/endothelial cells (30).
Epithelial cells are important for interhost transmission and many
diseases associated with HCMV, such as retinitis, gastroenteritis,
and encephalitis. Therefore, discovery of all relevant cell receptors
and signaling pathways on epithelial cells will reveal important
targets for preventing HCMV transmission and reducing diseases
associated with this virus.
Here, we adapt the CRISPR/Cas9 screening (31–34) technique

to identify host factors specifically required for HCMV infection
of epithelial cells. These efforts identified an olfactory receptor
family member, OR14I1, as being required for HCMV attachment,
entry, and infection of epithelial cells. OR14I1 interacts with the
HCMV PC, which can be blocked by anti-PC neutralizing anti-
bodies. Exogenous OR14I1 protein in membrane vesicles or a
synthetic OR14I1 N-terminal peptide prevents HCMV entry into
epithelial cells. Olfactory receptors signal via the generation of
cAMP by adenylate cyclase (AC) (35–38). We show that HCMV
entry and infection of epithelial cells are blocked by inhibitors of
AC and downstream protein kinase A (PKA) signaling when
OR14I1 is present. OR14I1 also mediates AKT signaling and
endocytosis-mediated entry of HCMV. The identification of
OR14I1 as a PC-dependent HCMV host receptor associated with
epithelial tropism and the role of an AC-mediated signaling
pathway in HCMV infection provide previously unappreciated
targets for the development of vaccines and antiviral therapies.

Results
Genetic Screen for Host Receptors Required for Epithelial Infection.
To identify host factors required for HCMV infection and rep-
lication, we performed two parallel genome-wide CRISPR
screens using either epithelial-tropic TB40E infection of ARPE-
19 epithelial cells or fibroblast-tropic AD169 infection of HEL
fibroblasts (SI Appendix, Fig. S1). Cells expressing Cas9 and the
GeCKO v.2 sgRNA library [19,050 genes targeted with 6 single-

guide RNAs (sgRNAs) per gene] were repeatedly exposed to
HCMV infection over 3 mo. Cells with sgRNA-induced resistance
to HCMV survived this challenge and expanded their numbers. To
identify enriched sgRNAs in the resistant cell population, their
genomic DNA was subjected to targeted next-generation se-
quencing (NGS). The reagent redundancy principle (39) was used
to select high-confidence candidates that scored with ≥3 unique
sgRNAs, each with ≥20 NGS reads. These selection criteria
resulted in 312 candidates in the epithelial cell screen. Genetic
screens are notorious for generating false positives, so specific hits
are suspect until independently confirmed. However, a collective
analysis may offer insight. To provide a sense of relevance to this
sample set, potential enriched pathways were identified using
ConsensusPathDB (SI Appendix, Table S1). Many of these path-
ways have been previously identified as relevant to HCMV infection
and replication by molecular and biochemical approaches. Two
pathways, “signaling pathway from G-protein families” and
“olfactory transduction,” directed our attention to olfactory
receptors as potential receptors for HCMV.
A review of candidates found solely in the epithelial cell screen

revealed OR14I1, which encodes an olfactory receptor family mem-
brane protein. In the initial evaluation, ARPE-19 epithelial cells
expressing sgRNAs against eitherOR14I1 or PDGFRA were infected
with a PC-positive (PC+) TB40E virus expressing green fluorescent
protein (TB40E-GFP) and assessed for GFP expression 2 d post
infection (dpi). The results demonstrate a marked reduction of
HCMV infection in either OR14I1-deficient or PDGFR-α–deficient
cells (Fig. 1 A and B). The OR14I1 observation was confirmed using
a clonally derived population of sgRNA-OR14I1 cells (Fig. 1 C and
D). The roles of OR14I1 and PDGFR-α were next evaluated in TC-
only AD169 virus infections of HEL fibroblasts. HEL cells expressing
sgRNAs targeting either OR14I1 or PDGFRA were infected with
AD169 virus, and the cultures were monitored for cytopathic ef-
fect (Fig. 1 E and F). Consistent with the screen results,
AD169 virus infection of HEL fibroblasts was inhibited by the
loss of PDGFR-α but not in the absence of OR14I1, suggesting
that OR14I1 is not required for AD169 infection of fibroblasts.
As expected, reduced virus infection was observed with TB40E-
GFP infection of ARPE-19 epithelial cells stably expressing
shRNAs against either OR14I1 or PDGFRA, given that this strain
contains both the TC and PC (Fig. 1 G–I). In contrast, AD169 virus
infection of HEL fibroblasts stably expressing shRNAs against either
OR14I1 or PDGFRA was inhibited by reduction of PDGFR-α but
not by depletion of OR14I1, as AD169 only expresses the TC (Fig. 1
J and K). Together, these data confirm that PDGFR-α is needed for
HCMV infection of fibroblasts and epithelial cells. In contrast,
OR14I1 is required for PC+ HCMV infection of epithelial cells.

Both OR14I1 and PDGFR-α Contribute to HCMV Binding to ARPE-19
Epithelial Cells. To establish the cellular localization of OR14I1,
ARPE-19 cells were transiently transfected with a vector expressing
Flag-tagged OR14I1 (Flag-OR14I1). OR14I1 was found to reside
at the plasma membrane and other membrane-associated in-
tracellular compartments (Fig. 2A). To verify that endogenous
OR14I1 is located on the cell surface, proteins exposed to the ex-
tracellular environment were biotinylated and enriched over a
streptavidin column. Both enriched and flow-through fractions were
analyzed by immunoblot for OR14I1. As shown in Fig. 2B,
OR14I1 was detected primarily in the biotinylated cell-surface
fraction while an intracellular protein, calnexin, was observed only
in the pooled unbound fractions. To determine if OR14I1 is nec-
essary for HCMV binding to epithelial cells, shRNA-OR14I1 or
shRNA-control ARPE-19 cells were chilled and then incubated
on ice with chilled PC+ TB40E-GFP virus. After incubation and
washing of unbound virus, viral DNA associated with the cell sur-
face was quantified by qPCR. These studies detected a 79.3 ± 4.3%
reduction of TB40E virus binding to OR14I1-depleted epithelial
cells (Fig. 3 A and B). As expected, similar observations were made
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Fig. 1. OR14I1 and PDGRFA are required for HCMV infection of epithelial cells. (A) ARPE-19 cells stably expressing the indicated sgRNAs were infected with
TB40E-GFP virus (MOI 3.0). Cells were imaged (10×) for GFP expression (green) as an indicator of viral infection at 2 dpi, and the percent GFP-positive cells was
quantified. CON, negative control. (B) Immunoblots of lysates from cells in A. (C) Clonally derived sgOR14I1-expressing ARPE-19 cells were infected with
TB40E-GFP virus (MOI 3.0). Cells were imaged (10×) for GFP expression (green) as an indicator of viral infection at 2 dpi, and the GFP-positive cells were
quantified. (D) Immunoblots of lysates from cells in C. (E) HEL fibroblasts stably expressing the indicated sgRNAs were infected with AD169 virus (MOI 3.0).
Infectivity was determined by cytopathic effect at 2 dpi. (F) Immunoblots of lysates from cells in E. (G) ARPE-19 cells stably expressing the indicated shRNAs
were infected with TB40E-GFP virus (MOI 2.0) and then imaged (10×) as in A. (H) ARPE-19 cells stably expressing the indicated shRNAs were infected with
TB40E-GFP virus (MOI 2.0). GFP expression was determined at 2 dpi using flow cytometry. The plot depicts GFP versus forward scatter (FSC). (I) Immunoblots of
lysates from cells in G. (J) HEL fibroblasts stably expressing the indicated shRNAs were infected with AD169 virus (MOI 2.0). Infectivity was determined by
cytopathic effect at 2 dpi. (K) Immunoblots of lysates from cells in J. Actin serves as a loading control throughout. Representative images of three in-
dependent experiments are shown. Data represent the mean of n = 3 experiments ±SD. ***P < 0.001, ****P < 0.0001.
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using shPDGFR-α ARPE-19 cells, given that TB40E virus contains
viral TC as well as PC. Optimal binding of HCMV to OR14I1-
deficient cells could be recovered in cells ectopically expressing an
sgRNA-resistant OR14I1 cDNA at physiological and supra-
physiological levels (Fig. 3 C and D and SI Appendix, Fig. S2), in-
dicating that OR14I1 is required for optimal binding to epithelial
cells. These results are consistent with the noted requirements for
PC+ HCMV infection, in that both OR14I1 and PDGFR-α are
necessary for HCMV binding to epithelial cells.
To determine whether HCMV interacts with OR14I1, Sf9 insect

cells were transduced with a baculovirus expressing Flag-tagged
human OR14I1 or control. Using a membrane flotation assay,
membrane vesicles generated from the transduced Sf9 cells were
incubated with PC+ TB40E-GFP virions, followed by fractionation
of the resultant suspension (40, 41) (Fig. 3 E and F). Individual
fractions were assessed by immunoblotting for their respective
levels of the HCMV virion protein pp65 and Flag-OR14I1. These
assays demonstrated a concordance in the fractional levels of
pp65 and OR14I1. Preincubation of TB40E-GFP virions with Sf9-
OR14I1 membrane vesicles reduced viral binding to ARPE-19
cells, demonstrating that exogenous OR14I1 competes with
HCMV binding to epithelial cells (Fig. 3G). To determine whether
TB40E-GFP binding to OR14I1 is dependent on the PC, ARPE-
19 epithelial cells were infected with either wild-type TB40E-GFP
or TB40E-GFP lacking the PC (TB40EΔUL128–131). Consistent
with published results, loss of the viral PC dramatically decreased
epithelial cell infection (Fig. 3H and SI Appendix, Fig. S3), and this
correlated with a comparable loss of virus binding to the cell
surface (Fig. 3I). A requirement for the PC to efficiently infect
epithelial cells was found to be independent of the HCMV strain
used (SI Appendix, Fig. S4). However, loss of the viral PC did not
affect HCMV infection of fibroblasts (SI Appendix, Fig. S5).
To determine if the PC is needed for HCMV binding to

OR14I1, PC+ TB40E-GFP virus was preincubated with neutral-
izing antibodies (19) against either of two PC subunits (pUL130 or
pUL128) or a negative control antibody; Sf9-OR14I1 membrane
vesicles were then added, and membrane flotation assays were
performed (Fig. 3J). These assays showed that viral binding to
OR14I1 was diminished by the presence of either anti-PC antibody.
Together, these results demonstrate that the virion-associated PC is
required for interaction of HCMV with OR14I1.

A Peptide Representing the N Terminus of OR14I1 Blocks HCMV Binding
and Infection of Epithelial Cells.A structural model of OR14I1 inferred
from the crystal structure of another G protein-coupled receptor,

4yay.1.A (soluble cytochrome b562, type 1 angiotensin II receptor),
predicts four regions of OR14I1 that are exposed to the cell surface
(Fig. 4A). Peptides were generated that represent each of these re-
gions, and their effects on TB40E-GFP virus binding to, and infection
of, ARPE-19 epithelial cells were determined. These assays revealed
that only the most N-terminal peptide (peptide 1) of OR14I1 pre-
vented TB40E-GFP binding and infection of ARPE-19 cells (Fig. 4 B
and C) in dose-dependent and sustained manners (Fig. 4 D and E).
The initial treatment with peptide 1 also limited the long-term
replication of HCMV (Fig. 4F). The antiviral activity of peptide
1 was independent of viral strain (Fig. 4G and SI Appendix, Figs.
S6 and S7), but was dependent on the presence of the PC (Figs. 4
and 5). Peptide 1 had a modest effect on PC+HCMV infection of
fibroblasts but prevented PC+ virus infection of ARPE-19 cells
(Fig. 5) and several other epithelial cell lines (SI Appendix, Fig.
S8). Together, these results show that a peptide representing the
N-terminal sequence of OR14I1 can limit the binding, infection,
and replication of PC+ HCMV in epithelial cells.

AC/PKA/AKT Signaling Is Required for HCMV Entry and Infection of
Epithelial Cells. OR14I1 belongs to the family of G protein-coupled
receptors (GPCRs) that initiate a cascade of cellular signaling
events. Downstream signaling by olfactory receptors is mediated by
adenylate cyclase and protein kinase A activities (38). Given that
OR14I1 is required for PC-mediated HCMV attachment and in-
fection of epithelial cells, a role for AC and PKA in HCMV rep-
lication was accessed. ARPE-19 epithelial cells expressing either
a control shRNA, or an shRNA against OR14I1 expression, were
pretreated with the following: the AC antagonist SQ22536, AC
agonist forskolin (FSK), PKA inhibitor H-89, or OR14I1 peptide
1. The signaling inhibitors H-89, SQ22536, as well as peptide 1 sig-
nificantly reduced infectivity (Fig. 6 A and B). In contrast, the AC
agonist FSK enhanced infection of ARPE-19 epithelial cells, but only
in cells expressing OR14I1, suggesting that the combination of
OR14I1 engagement and AC activity is required for HCMV in-
fection. These observations were further explored by synchronizing
infections by temperature shift and virus entry measured at 2 hpi by
intracellular staining of the virion pp71 protein (Fig. 6C). The pat-
terns were similar to those in Fig. 6A, where antagonists reduced
entry and the agonist enhanced entry in the presence of OR14I1,
thereby reinforcing the conclusion that the combination of OR14I1
engagement and AC activity is required for HCMV entry. To de-
termine whether OR14I1 engagement activated the signaling cas-
cade, we monitored the AKT phosphorylation state and found it was
rapidly activated when virus and cells were synchronously released
from a chilled incubation state by a shift to 37 °C (Fig. 6D). In-
terestingly, AKT and PKA activation is reduced when OR14I1 is
depleted (Fig. 6D), which indicates that OR14I1 is required for
stimulating the AC/PKA/AKT signaling pathway.

OR14I1 Mediates Endocytosis of HCMV. HCMV enters into epithe-
lial cells by endocytosis followed by low pH-dependent fusion (12,
42). Uptake of fluorescently labeled transferrin was used to monitor
endocytosis activity (43, 44). HCMV infection increases endocytosis,
as measured by transferrin uptake in ARPE-19 epithelial cells by
2 hpi (SI Appendix, Fig. S9A). Moreover, HCMV uptake tracked
with transferrin, as measured by the intracellular appearance and
apparent colocalization of virion-derived pp71 with transferrin (SI
Appendix, Fig. S9B), further confirming that HCMV enters epi-
thelial cells through endocytosis. Both transferrin uptake and
HCMV internalization were reduced in cells lacking OR14I1, sug-
gesting that this receptor contributes to HCMV infection of epi-
thelial cells by endocytosis. Many viruses that are internalized
by endocytosis subsequently require the low-pH environment of
endosomes to trigger viral membrane glycoproteins to promote
fusion (45–47). Lysosomotropic agents such as ammonium
chloride interfere with endosome acidification by buffering
endosomal pH, which has been shown to inhibit infection by
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HCMV and other viruses that require low endosomal pH (12,
45, 48). When ARPE-19, HEL, and OR14I1−/− cells were
pretreated with ammonium chloride, HCMV entry was reduced
in ARPE-19 cells and to a lesser extent in OR14I1−/− ARPE-
19 cells, but not affected in HEL cells (Fig. 7). These obser-
vations are consistent with a previous report showing that

HCMV enters fibroblasts by pH-independent fusion at the
plasma membrane (11) instead of endocytosis. Of note, the low
levels of HCMV entry in OR14I1−/− cells are further reduced
by ammonium chloride pretreatment (Fig. 7), thereby raising the
possibility that a second endocytic pathway exists in ARPE-19 that
can mediate viral entry.
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Discussion
Here we used CRISPR/Cas9 screens to identify an olfactory
receptor, OR14I1, required for HCMV infection of epithelial
cells. This cell type is central to interhost HCMV transmission
and pathogenesis. Further characterization revealed that OR14I1
functions as a host receptor for the viral pentameric complex and
plays an essential role in epithelial cell tropism of HCMV. Our

data also suggest that OR14I1 and PDGFR-α serve nonredundant
roles as coreceptors for HCMV in epithelial cells. In the absence
of the PC, HCMV no longer interacts with OR14I1 or efficiently
infects epithelial cells. In contrast, HCMV infection of fibroblasts
relies on the interaction of the viral trimeric complex with re-
ceptors (PDGFR-α) and coreceptors (integrins) for infection (SI
Appendix, Fig. S10). A primary route of HCMV transmission
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involves infection of epithelial cells in the oral cavity (49), and
epithelia are initial sites of HCMV replication and pathogenesis.
Thus, the identification of an epithelial tropism receptor for the
HCMV PC and the role of an adenylate cyclase and PKA sig-
naling pathway in epithelial infection improve our understanding
of HCMV pathogenesis and suggest previously unappreciated
strategies for the prevention and treatment of HCMV infection.
Importantly, the N terminus of OR14I1 is identified as a potential
drug target to prevent HCMV infection.
CRISPR screens of host genes have permitted the exploration

of viral infection with generally greater versatility and fidelity in
comparison with RNAi approaches. Interpretation is simplified
because CRISPR approaches generate null cells whereas RNAi
approaches can result in hypomorphic phenotypes. However,
CRISPR-mediated gene ablation often limits readouts to initial
virus–cell and proximal events. Both approaches are prone to false
positive (and negative) results, so validation is a critical first step to
studying individual hits. Given this caveat, we limited our analysis to
validated hits and to pathway analysis with the assumption that it is
less likely that multiple (or all of the) hits in a predicted pathway
would be false positives. Experimentally, we find the relative
strengths and weaknesses of the two approaches to be comple-
mentary, and exploited them in this study. We used a retinal pig-
ment epithelial cell line (ARPE-19) and a primary cell line of
human lung fibroblasts (HEL) for the screens, which are cell types
targeted by HCMV in vivo. Using this approach, we identified both a
known (PDGFR-α) and an unrecognized HCMV receptor (OR14I1).
OR14I1 is a GPCR and a member of the large olfactory re-

ceptor family. The recently recognized OR14 gene family (50) is
part of the type II group of olfactory receptors (51). There are six
OR14 genes and one pseudogene within the six subfamilies of
human OR14, which are located on chromosome 1 (50). Tradi-
tionally, olfactory receptor families are thought of as chemo-
sensors that are responsible for olfaction. As such, they are found
in sensory organs that contain olfactory epithelium and neurons in
the nasal cavity in mammals. In addition to this specialized role in
the nose, olfactory receptors, including OR14I1, are widely dis-
tributed in organs and systems in mammals (52) with evidence for
evolutionary constraint of these so-called ectopically expressed
olfactory receptors, which is consistent with biologically significant
function (53). Indeed, certain ectopically expressed olfactory re-
ceptors function in physiology, including roles in renal and blood
pressure regulation (54, 55). However, no function has been as-
cribed to any member of the OR14 family.
That olfaction-related receptors can transmit infectious agents

has been demonstrated previously (56–58). However, the specific
epithelial cells responsible for HCMV transmission are not known.
A report suggests that murine CMV (MCMV) exploits olfaction to
enter new hosts (59). MCMV infects nasally rather than orally, both

after experimental virus uptake and during natural transmission.
HCMV can behave as a neurotropic virus with predilection for the
retina and central nervous system (60). Murid herpesvirus 4 and
herpes simplex virus 1 can use olfactory epithelium as an entry site
(61, 62). Given the results presented here, it is tempting to speculate
that HCMV could transmit via a similar mechanism.
Mammalian olfactory neurons possess a well-developed system

of endocytic vesicles, endosomes, lysosomes, and endocytosis that
function in the olfactory epithelium (63). As GPCRs, olfactory
receptors engage ligands at the N terminus of the receptors and
signal through AC and PKA pathways (64–66). Thus, HCMV
interaction with the N terminus of OR14I1 and the use of
downstream signaling to gain entry into cells are consistent with
GPCR interactions with their native ligand. Unfortunately, like
many olfactory receptors, OR14I1 is an orphan receptor. The ab-
sence of a known ligand limits our ability to perform comparative
studies of the signaling processes and their relationship to entry.
Fibroblast infection involves interactions of the TC with PDGFR-

α and gB-mediated fusion of the virion and plasma membranes
(24). Infection of epithelial cells appears to be more complex with
gB, and TC contributions plus the viral PC interactions with the host
receptor. Viral entry in this context is thought to be via endocytosis/
micropinocytosis (12). In addition to our identification of OR14I1 as
a receptor for the PC, others have shown that CD147 functions as an
entry mediator for PC+HCMV into epithelial cells (29), although a
direct interaction between CD147 and the PC was not observed. A
recent PC interaction screen identified NRP2 as a receptor for the
PC (30). The multipass membrane protein OR14I1 was apparently
not detected. This may be due to an inherent bias of the biochemical
screen that limited candidates to single-pass membrane proteins.
Both CD147 andNRP2 appeared in our CRISPR screen. NRP2 was
a lower-ranking hit, and neither was subjected to further analyses.
The presence of at least three sets of virion glycoproteins and
multiple host cell receptors demonstrates that virion–receptor in-
teractions and infection of cells by HCMV are complex.
This report shows that the HCMV PC requires OR14I1 binding

and activation of AC/PKA/AKT signaling to define epithelial tro-
pism. These findings do not exclude roles for other coreceptors
during HCMV infection, such as PDGFR-α/EGFR, integrins,
and NRP2. HCMV infection of epithelial cells can be blocked by a
synthetic peptide representing the N terminus of OR14I1 or in-
hibitors of intracellular signaling. Together, these findings answer
questions regarding a mechanism for epithelial tropism, and offer
antiviral strategies for the management of HCMV transmission
and disease.

Materials and Methods
Cell Lines. ARPE-19 epithelial cells, human embryonic lung (HEL) fibroblasts,
A549 epithelial cells, HEK293T cells, H1HeLa cells, MRC5 cells, and Sf9 insect
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cells were obtained from the ATCC. Detailed information on culture condi-
tions is provided in SI Appendix, Materials and Methods.

Viruses. HCMV AD169 (ATCC) was propagated in HEL fibroblasts by infecting
at a multiplicity of infection (MOI) of 0.01 followed by culturing the cells until
a cytopathic effect was well-developed. Virus was prepared by sonicating
the cells, followed by centrifugal clarification at 2,000 × g. Titering was
done using a standard plaque assay on HEL fibroblasts. HCMV TB40E-GFP virus
was generated from a bacterial artificial chromosome (BAC), which was a kind
gift of Eain Murphy, Cleveland Clinic, Cleveland, OH. This version of TB40E-GFP
expresses GFP as a transgene under the control of an SV40 origin/promoter
cassette. Infectious virus was recovered by electroporation of BAC DNA into
HEL fibroblasts as described (67). TB40E-GFP was adapted to ARPE-19 epithelial
cells through eight passages, infecting at an MOI of 0.1 for each passage. Viral
stocks of TB40E-GFP were generated and titered as described for AD169.
TR5 and TR5ΔUL128–131 were described (68). TB40EΔUL128–131 virus was
generated by BAC recombineering using the same primers and protocol
used to create TR5ΔUL128–131 and was kindly provided by Jay Nelson,
Oregon Health & Science University, Beaverton, OR. BADwt (69) is derived
from a BAC clone of HCMV AD169. BADrUL131 (17, 19) is a PC-expressing
derivative of BADwt in which the UL131 ORF has been repaired. Both
clones were kindly provided by Thomas Shenk, Princeton University,
Princeton. Cell-free virions were purified by centrifugation (SW28 rotor;
Beckman) at 23,000 rpm for 1 h through a sorbitol (Fisher Bioreagents)
cushion, and then resuspended in serum-free medium. In each experiment,
HEL or ARPE-19 cells were infected with HCMV at the noted MOI for 2 h at
37 °C, except for viral binding studies, which were done on ice.

Recombinant retroviruses and lentiviruses were produced in HEK293T
cells, and titers were determined by standard colony formation assay on
H1HeLa cells (70).

sgRNA Library Cells. Streptococcus pyogenes Cas9 was subcloned from lentiCas9-
Blast (Addgene; 52962) into the pHAGE-hygromycin lentiviral vector (Addgene).
pHAGE-H-Cas9 lentivirus was used to transduce ARPE-19 cells and HEL fibroblasts
(ARPE-19-Cas9, HEL-Cas9), which were selected with hygromycin B (200 μg/mL;
Life Technologies). ARPE-19-Cas9 cells and HEL-Cas9 fibroblasts were trans-
duced with the human GeCKO v.2 sgRNA library, part A or B (33) (Addgene;
1000000049;MOI 0.2), and selected with puromycin (2.5 μg/mL; Life Technologies).

CRISPR Screens. ARPE-19-Cas9 cells expressing the GeCKO v.2 library were
infected with TB40E-GFP (MOI 5.0). In a parallel screen, HEL-Cas9 fibroblasts
expressing the GeCKO v.2 library were infected with AD169 (MOI 5.0). The
surviving cells were expanded and genomic DNA was prepared. Screening
details are described in SI Appendix, Materials and Methods.

sgRNA Sequencing and Analysis. The host genome-integrated sgRNAs were
amplified and subjected to NGS using an Ion Proton Sequencer (Life Tech-
nologies). After sequencing and analysis, selected candidate genes
were chosen for further study if they had ≥20 reads per sgRNA
across ≥3 independent sgRNAs. Detailed information is provided in SI Ap-
pendix, Materials and Methods.

ARPE-19−/− and HEL−/− Cells. sgRNA sequences were cloned into the LentiGuide-
Puro vector to generate knockout cells. For details, see SI Appendix, Materials
and Methods.

ARPE-19 and HEL shRNA Cells. shRNA sequences were cloned into the pLKO.1-
blast lentiviral vector and used to generate shRNA cells. For details, see SI
Appendix, Materials and Methods.

Immunoblotting. Cells were processed for immunoblotting as described (71).
Detailed information about antibodies is provided in SI Appendix, Materials
and Methods.

Imaging. Phase, GFP, transferrin, HCMV pp71, and early protein images were
captured on a Zeiss microscope (AxioObserver Z1) at 4×, 10×, or 63× mag-
nification. For quantitation of fixed cells, cells were fixed and DNA was
stained. The fixed cells were imaged and analyzed with MetaXpress imaging
software (Molecular Devices) to determine the total cells per well and the
percentage of infected cells (GFP-positive) in each well. Vignetting in images
is due to edge effects resulting from capturing entire wells. Detailed in-
formation is provided in SI Appendix, Materials and Methods.
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bound virus. They were then fixed, permeabilized, stained with anti-pp71, and
imaged (63×). (Scale bars, 10 μm.) Representative images of three independent
experiments are shown. (D) ARPE-19 and OR14I1−/− cells were infected with
cold TB40E (MOI 2.0) for 1 h on ice. Cells were transferred to 37 °C for 0, 5, and
10 min. Levels of p-AKT (S473), total AKT, p-PKA (T197), and actin were de-
tected by immunoblotting from whole-cell lysates. o/n, overnight.
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Plasmids. PQCXIN-OR14I1, PQCXIN-Flag-OR14I1, and PQCXIN-OR14I1 rescue
were constructed using the PQCXIN retroviral vector (Clontech). Cloning
details are included in SI Appendix, Materials and Methods.

Transient Transfections and Confocal Imaging of CD71 and Flag-OR14I1. Flag-
OR14I1 plasmid was transiently transfected into ARPE-19 cells. Thirty-six
hours after transfection, cells were fixed, permeabilized, and costained with
anti-Flag (F1804; Sigma; 1:100) and anti-CD71 (555534; BD Pharmingen; 1:100)
antibodies. Samples were imaged using a Nikon A1 inverted confocal micro-
scope. Detailed information is provided in SI Appendix,Materials andMethods.

Cell-Surface Protein Detection. The Pierce Cell Surface Protein Isolation Kit
(Thermo Scientific) was used for isolation and collection of surface proteins,
generally following the manufacturer’s protocol. For further details, see SI
Appendix, Materials and Methods. Immunoblotting was performed with
antibodies specific for OR14I1 (ARP71293-P050; Aviva Systems Biology) and
calnexin (sc-23954; Santa Cruz Biotechnology).

Flow Cytometry. ARPE-19 cells were infected with GFP-expressing virus. Flow
cytometry was performed on a MACSQuant analyzer (Miltenyi Biotec) to
quantify GFP-positive cells. For details, see SI Appendix,Materials andMethods.

Virus Binding Assay. ARPE-19 cells were chilled on ice for 20 min and then
incubated with chilled TB40E-GFP at the indicatedMOI on ice for 1 h. The cells
were then washed 10 times with cold PBS. Cellular DNA and cell-associated
viral DNA were isolated using a DNeasy Blood & Tissue Kit (Qiagen). Viral
DNA (UL83) and host DNA (β-ACTIN) were quantified by real-time quanti-
tative PCR as described (72).

Generation of ARPE OR14I1 Rescue and Overexpression Cells. PQCXIN-OR14I1
rescue plasmid was packaged into retroviruses which were used to trans-
duce ARPE-19 OR14I1−/− cells (for rescue), or PQCXIN-OR14I1 was packaged
into retroviruses which were used to transduce ARPE-19 cells (for over-
expression) as previously described (72). OR14I1 expression was confirmed
by immunoblotting.

Expression of Human OR14I1 in Sf9 Cells. Human OR14I1 cDNA was Flag-
tagged at the N terminus and subcloned into the pFasBac/CT-Topo baculovirus
vector to generate Sf9 cells that express human OR14I1. Detailed
information is provided in SI Appendix, Materials and Methods.

Membrane Vesicle Preparation. Sf9 cells were harvested at 4 dpi with the
recombinant OR14I1-expressing baculovirus. Pellets were washed twice with
PBS and resuspended in hypotonic lysis buffer. Details of the preparation and
processing of membrane vesicles are available in SI Appendix, Materials
and Methods.

Neutralization Assay. Purified TB40E-GFP virus (30-μL volume, 1 × 105 pfu) was
incubated with either anti-pUL128 rabbit polyclonal antibody (1 μg/30 μL),
anti-pUL130 3E3 murine monoclonal antibody (2 μg/30 μL), or isotype-matched
control Ig antibodies (Abcam) for 1 h at 700 rpm in a ThermoMixer C (Eppendorf)
at room temperature. Both the anti-UL128 and anti-UL130 antibodies bind to
the PC and neutralize HCMV (19) (antibodies were provided by Thomas Shenk).
After incubation with the noted antibodies, the virus preparation was used for
membrane flotation assays.

Membrane Flotation Assay. Purified TB40E-GFP virus, or virus incubated with
the antibodies noted above (Neutralization Assay), was mixed with either

Sf9-control or Sf9-Flag-OR14I1 membrane vesicles. After incubation, the
membrane vesicle/virus sample was then mixed with sucrose solution. The
samples were then ultracentrifuged. Fractions were collected from top to
bottom and analyzed by immunoblotting. Details of this assay are provided
in SI Appendix, Materials and Methods.

In Vitro Blocking Assay. TB40E-GFP virus was incubated with Sf9-control– or
Sf9-Flag-OR14I1–containing membrane vesicles (40 μg/mL) for 2 h at 37 °C in
a ThermoMixer. ARPE-19 cells were chilled and then incubated with the
resultant chilled virus on ice for 1 h (MOI 3.0).

Three-Dimensional Structure Prediction and Peptide Synthesis. A structure for
OR14I1 was inferred using SWISS-MODEL (https://swissmodel.expasy.org) with
4yay.1.A (soluble cytochrome b562, type 1 angiotensin II receptor) as a G protein-
coupled receptor prototype and visualized using Swiss-PdbViewer 4.1.0 (https://
spdbv.vital-it.ch/download_prerelease.html). Regions of OR14I1 predicted to be
on the cell surface were identified and corresponding peptides were synthesized
(peptide sequences are listed in Fig. 4A). Peptides were synthesized by Bachem.

Peptide Blocking Assay. The noted synthetic peptides (100 μg/mL each or as
described) were mixed with TB40E-GFP virus (1.2 × 106 pfu) and incubated at
37 °C for 2 h with rocking. The resulting samples were then subjected to the
cells for binding (Virus Binding Assay) or infection assay. For infection assay,
the mix of peptide and TB40E was then added to the cells for 2 h. After
incubation, the virus and peptide were removed and replaced with culture
medium without peptide.

AC/PKA Signaling Pathway Modulation. ARPE-19 cells expressing the indicated
shRNAs were treated with H-89, SQ22536, or forskolin before and during
infection with TB40E-GFP. Detailed information is available in SI Appendix,
Materials and Methods.

Viral Entry Assays. Cells were pretreated with PKA inhibitor H-89 (20 μM), AC
antagonist SQ22536 (150 μM), AC agonist forskolin (20 μM), or DMSO solvent
and then incubated with cold TB40E virus with the noted small molecules. Cells
were then transferred to 37 °C, fixed, stained with anti-pp71 (red), and imaged
(63×). Detailed information is provided in SI Appendix,Materials andMethods.

PKA/AKT Signaling Detection. Cells were starved and infected with TB40E virus.
The levels of p-AKT, total AKT, p-PKA, and actin were detected by immuno-
blotting. Detailed information is available in SI Appendix,Materials andMethods.

Endocytosis Assay. A published protocol was employed that uses labeled
transferrin to monitor uptake (43, 44). In addition, the lysosomotropic agent
ammonium chloride, which inhibits endocytosis (12, 45, 48), was examined
for its effect on viral entry. Detailed information is available in SI Appendix,
Materials and Methods.

Statistical Analysis. Statistical analyses were performed using unpaired t tests.
Values are expressed as mean ± SD of three independent experiments. A P
value of <0.05 was considered statistically significant. *P < 0.05, **P < 0.01,
***P < 0.001, ****P < 0.0001.
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Fig. 7. OR14I1 mediates endocytosis for entry of
HCMV. ARPE-19, OR14I1−/− ARPE-19, and HEL cells were
pretreated with ammonium chloride (30 mM) for 2 h.
Cells and virus were cooled on ice for 30 min and in-
fected with cold TB40E (MOI 2.0) in the presence or
absence of ammonium chloride for 1 h on ice. Cells
were transferred to 37 °C. At 2 hpi, cells were washed
and treated briefly with trypsin to remove surface-
bound virus. The cells were then fixed, permeabilized,
stained with anti-pp71, and imaged (63×). (Scale bar,
10 μm.)
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